

2006

BASIN HIGHLIGHTS REPORT

FOR THE

RIO GRANDE BASIN

PREPARED IN COOPERATION WITH THE Texas Commission on Environmental Quality. The preparation of this report was financed through grants from the Texas Commission on Environmental Quality.

TABLE OF CONTENTS

Table of Contents 1
Monitoring 2
Upper Rio Grande Basin 5
FY2006 Upper Rio Grande Monitoring Stations
Upper Rio Grande Monitoring Stations
Middle Rio Grande Basin 10
FY 2006 Middle Rio Grande Monitoring Stations 12
Middle Rio Grande Monitoring Stations
Lower Rio Grande Basin14
FY2006 Lower Rio Grande Monitoring Schedule 16
Lower Rio Grande Monitoring Stations 17
Pecos River Basin 18
FY2006 Pecos River Monitoring Schedule
Pecos River Monitoring Stations 21
Public Outreach 22
Website
Contacts

MONITORING

The United States Section of the International Boundary and Water Commission (USIBWC) supports and administers the Clean Rivers Program (CRP) in the Rio Grande basin under the guidance of the Texas Commission on Environmental Quality (TCEQ), providing expert insight into the needs and water quality issues that are unique to an international water boundary.

CRP partners throughout the basin have been a valuable asset in water quality monitoring, advice and suggestions on improving the program and the basin; developing and assisting in special studies; and communicating and educating the general public.

During the past year, the CRP continued to maintain its large network of water quality monitoring stations, and added new real-time stations throughout the basin.

Monitoring types

Routine monitoring – This is the primary monitoring type performed in the basin. Routine monitoring is performed at fixed locations at regular intervals throughout the year for specific parameters. This data is used to establish a baseline and provide information about ambient water quality conditions in the water body. It is through routine monitoring that positive or negative trends in water quality can be determined and concerns or impairments can be identified.

Intensive monitoring – This type of monitoring is performed at a routine monitoring site to provide more detailed information by using a more intensive schedule or additional parameters not performed during the routine analysis. This type of monitoring is usually initiated after the routine monitoring has identified a problem with water quality that needs to be further isolated by source in order to find a solution to the water quality issue.

Special studies – This type of monitoring is performed in a river segment to address concerns identified by other agencies, local communities, or academia to determine unique impacts in that area. These studies are usually short term and very intensive, utilizing the efforts of several different organizations to produce data on a single aspect of the water body.

Clean Rivers Program partner collecting invertebrate samples in the Wild and Scenic portion of the Rio Grande.

Parameters monitored

Field

When samples are collected for laboratory analysis, personnel also take measurements to record conditions at the time the sample was taken. Field measurements include: weather conditions at the time of collection, recent rain events in the area, the water and air temperature, water depth, stream width, flow and how that flow compares to the normal flow for that water body, secchi disk or how murky the water is, and three of the most important water quality parameters in a water body, pH, conductivity, and dissolved oxygen.

pH - is a measure of how acidic or basic the water is. The range goes from 0 to 14, with 7 being neutral. pH values less than 7 indicate acidity, whereas a pH greater than 7 indicates a base. State water quality standards require the pH to be between 6.5 and 9.0. If the pH falls outside of this range, aquatic plants and animals can no longer survive and the water is harmful to humans who come into contact with it as well.

Conductivity – is an indicator of how well the water conducts electricity. Pure water does not conduct

The Rio Grande below Big Bend National Park in the Wild and Scenic stretch.

electricity; the impurities in water are what allow electricity to pass through the water. These impurities are salts and metals. Since total and dissolved metal values are very low, conductivity primarily measures how much salt is in the water.

Dissolved oxygen (DO) – one of the most important water quality parameter of them all. Low DO values can lead to reduced numbers of aquatic plants and animals in the water body and increase harmful bacteria levels. State standards for DO vary depending on the designated use of the water body for the quality of aquatic life.

Conventional

These parameters are collected in the field and analyzed by a laboratory. All of the sites monitored are analyzed for conventional parameters, which include:

Solids – total and dissolved material of any kind. High solids lead to murky water and lower available oxygen for plants and animals. High dissolved solids can render the water unusable as a drinking water source without costly advanced treatment processes.

Nutrients – such as nitrogen compounds, ammonia, and phosphorous. High nutrient levels can cause excessive plant growth, which can lead to reduced dissolved oxygen, reduced stream flow and reduced navigability of the waters.

Salts – sodium, potassium, magnesium, calcium, chlorides, and sulfates. These parameters combine to produce salts in the water, which can make the water undrinkable, reduce aquatic plant and animal survival, and make agricultural lands unusable.

Chlorophyll-a – an indicator of excessive plant and algal growth in the water body.

Alkalinity – measures the acid neutralizing ability of the water due to the amount of carbonates, bicarbonates, and hydroxides in the water. Alkaline water is detrimental to agriculture and plant growth.

Other parameters that are periodically tested are silica, organic carbon, fluoride, and oil and greases.

<u>Metals</u>

Historical data has shown that metals are not a concern in the Rio Grande and are tested less frequently. Metals can be tested as total or dissolved metals in water and can be tested in the sediment to determine long-term accumulation of metals. Metals typically analyzed are aluminum, arsenic, barium, chromium, copper, lead, mercury, nickel, silver, and zinc.

Organics

These parameters are tested less frequently than metals, also because of the cost and because of low historical presence in the water. Organic compounds analyzed are herbicides, pesticides and industrial organic compounds in the water and the sediment.

Bacteria

The CRP analyzes samples for fecal coliform and *E. coli* as indicators of bacterial contamination of the water body. The state of Texas is switching from fecal coliform to *E. coli* as the preferred indicator bacteria, but is analyzing for both until there is sufficient bacterial data for use in assessing trends and patterns in bacterial contamination.

Screening Criteria

Data collected for the previously mentioned parameters are then checked by the CRP for accuracy, quality, and adherence to approved methods. The data are then submitted to TCEQ, which also runs quality assurance checks on the data before including the data in the state database. Data from the past five years that contain at least 10 data collections is then assessed against the Texas Surface Water Quality Standards (TSWQS) that are assigned to each stream segment to create a summary of the water quality. This summary is used to create the Texas Water Quality Inventory. Any section of a water body that does not meet the standards is then placed on the 303(d) report, which lists concerns and impairments in the water bodies of the state. Sections of a water body listed on the 303(d) are assessed to determine the course of action to take in identifying the cause of the impairment and possible solutions to remove that listing.

Impairments are determined when a section does not meet the primary standards assigned the segment. Primary concerns are chlorides, sulfates, total dissolved solids (TDS), dissolved oxygen, pH, temperature, and bacteria. The designated use of the stream segment determines what value will be set for the standard.

Concerns are determined when a section does not meet the secondary standards. Secondary criteria are determined based on the water body type. The entire Rio Grande basin except segment 2301 is listed as a freshwater stream. Segment 2301 is listed as a tidal stream. The secondary parameters for a freshwater stream are listed below:

Parameter	<u>Criteria</u>
Ammonia	0.17 mg/l
Nitrate + nitrite	2.76 mg/l
Total phosphorous	0.80 mg/l
Ortho phosphorous	0.50 mg/l
Chlorophyll-a	11.6 ug/l

The secondary parameters for a tidal stream are listed below:

Parameter Parameter	
Ammonia	

<u>Criteria</u> 0.58 mg/l

Nitrate + nitrite	0.26 mg/l
Total phosphorous	0.71 mg/l
Ortho phosphorous	0.55 mg/l
Chlorophyll-a	19.2 ug/l

A section is listed as having a concern if more than 25% of the data fail to meet the above criteria.

Designated Uses

Contact Recreation – fishing, swimming, wading, boating, etc. The primary parameter of concern for this use is bacteria. The standard for the geometric mean for *E. coli* is 126 Coliform Forming Units/100 ml (CFU). For fecal coliform it is 200 CFU. The standard for a single grab sample is 396 CFU for *E. coli* and 400 CFU for fecal coliform.

Domestic water supply - as a drinking water source, the primary concern is TDS. The SDWA standard is 1,000 mg/l.

Aquatic life use – this designated use has four levels depending on how much aquatic life is usually found in the stream in the form of fish, benthics (aquatic insects), and plants. The primary criterion for this use is DO. For exceptional the standard is 6.0 mg/l, for high the standard is 5.0 mg/l, for intermediate the standard is 4.0 mg/l, and for low the standard is 3.0 mg/l.

<u>Fish consumption</u> - this applies to stream segments where citizens may collect and consume fish from the river.

The standard for pH in all uses in the Rio Grande basin is between 6.5 and 9.0. The last primary concern is the maximum temperature with the standards falling between 31° and 35° Celsius, or 88° and 95° Fahrenheit.

Assessment and Monitoring Schedule

On the following pages is the assessment of water quality by sub-basin followed by the monitoring schedule, coordinated with our partners in the basin during our annual coordinated monitoring meetings, and a map of the sub-basin and station locations. The monitoring schedule lists the TCEQ designated segment and TCEQ region that the station is located in, the latitude and longitude of the station, the station description and I.D. number, and the number of times per year that the specified parameter is collected at each station by one of our partners.

UPPER RIO GRANDE BASIN

Introduction

The upper Rio Grande sub-basin extends from the Texas – New Mexico state line downstream to the International Amistad Dam, a length of 650 miles (1045 km). The river flows through 8 counties in the United States and consists of five river segments; 2314, 2308, 2317, 2306, and 2305. In segment 2314, the river meanders in and out of Texas and New Mexico and in some parts forms the boundary between the two states. After segment 2314, the Rio Grande forms the international boundary between the United States and Mexico.

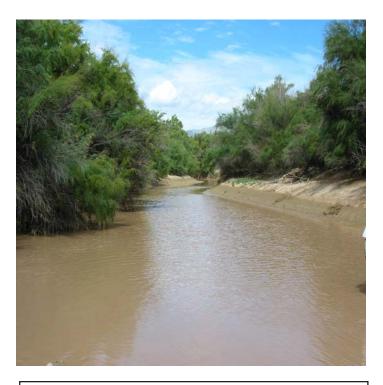
During irrigation season, the water in the river is used for agriculture by New Mexico, Texas, and Mexico. The city of El Paso, TX also uses the river to provide half of its drinking water supply. The sister cities of El Paso and Ciudad Juarez, Chihuahua have a combined population of over 2 million and lands surrounding the cities are used primarily for agriculture. This reduces the quantity and the quality of water in the river significantly. Water in the river downstream of these cities is primarily composed of agricultural return flows, wastewater effluent, and raw or partially treated sewage. Because of this, the upper Rio Grande downstream of El Paso/Juarez is very high in salts and bacteria.

As the river flows by the sister cities of Presidio, TX and Ojinaga, Chihuahua, the Rio Conchos combines with the Rio Grande improving the water quality slightly. The combined water from both rivers then flows along Big Bend National Park, where the quality and quantity of the water is depended on by tourism and wildlife in the park.

Prior to the river entering Amistad Dam, the Pecos River enters the Rio Grande increasing the water quantity prior tp the river being impounded by the International Amistad Dam, operated by the International Boundary and Water Commission. Benefits created by the dam include flood prevention for downstream communities, improved water quality, water supply, and steady, continuous flow in the river below the dam as well as fishing and recreation. The dam also contains two hydroelectric plants that can produce electricity for communities on both sides of the border.

The pristine waters of the Devils River.

Water Quality Review


Segment 2314 extends from the New Mexico – Texas state line downstream to the International Dam in El Paso County, a length of 21 miles (33 km). Designated uses for this segment are high aquatic life use, public water supply, fish consumption, and contact recreation. There are two existing monitoring stations in this segment and another station that is being used as a special study site. Primary impactors in this segment are irrigated agriculture, some industry, and municipal wastewater treatment effluent. Treaty allotments of water for the United States are diverted at the American Dam. A short distance downstream, Mexico's treaty allotment is diverted at the International Dam. For more information on the treaties between the United States and Mexico, visit www.ibwc.state.gov/html/treaties.html. Water diverted for the United States is sent along a canal system, the Rio Grande American Canal Extension (RGACE) and the Franklin Canal, for use by El Paso as a drinking water source and for irrigation by United States farmers. Water diverted into Mexico is used by Mexican farmers for irrigation purposes in the Juarez Valley.

This segment is listed as having a contact recreation impairment due to bacterial values exceeding the standards. The exceedance has been linked primarily to overloaded wastewater treatment facilities discharging outside of these standards. Efforts by several agencies and neighborhood groups have led to improvements in these plants that have reduced some of the bacterial impacts in this segment. Continued monitoring will determine if this issue has been resolved or if there are other sources that need to be addressed. Another listed impactor for bacteria is a large number of Confined Animal Feeding Operations located upstream. All other uses are fully supported in this segment.

Segment 2308 is the region below International Dam downstream to the Riverside Diversion Dam in El Paso County, a length of 15 miles (24 km). The designated uses for this segment are low aquatic life use, non-contact recreation, fish consumption, and public water supply. There are three monitoring stations along this segment. The upper portion of this segment was concrete lined to prevent meandering of the international boundary. Since the creation of the RGACE canal, this segment contains very little water. This segment is meeting all of its primary standards, but is listed as having a concern for phosphorous.

Segment 2307 runs from the Riverside Diversion Dam in El Paso County to the confluence with the Rio Conchos in Presidio County, a length of 222 miles (357 km). The designated uses for segment 2307 are contact recreation, public water supply, high aquatic life use, and fish consumption. There are five monitoring stations in this segment and three special study sites.

The upper portion of this segment receives flow from irrigated agriculture and wastewater treatment plant effluent from both countries and also receives poorly treated sewage as well. Because of this, this segment has an impairment due to elevated bacteria levels, high chloride concentrations, high sulfate concentrations, and high TDS

Saltcedar lining the banks of the Rio Grande in the Forgotten River stretch.

values. This site has also exhibited high ammonia and phosphorous levels leading to high algal content.

Below these points, there are no impactors on the river as it meanders through rough terrain and sparse ranch land. Bacteria and salt concentrations decline slightly as the river reaches the end of the segment but still exceed the standards.

Segment 2306 flows from the confluence with the Rio Conchos in Presidio County to the confluence with Ramsey Canyon in Val Verde County, a length of 313 miles (503 km). The designated uses are high aquatic life use, contact recreation, fish consumption, and public water supply. There are seven monitoring stations along this segment. Presidio, Texas and Ojinaga, Chihuahua are the primary impactors in this segment. The river then flows through Big Bend Ranch State Park and Big Bend National Park and then meets with the Pecos River. High TDS levels from segment 2307 still affect this segment causing an impairment for drinking water use, while elevated bacteria levels create an impairment for contact recreation use. There is also a concern for elevated algal growth throughout the Big Bend area. Bacteria levels drop below the standard as the river reaches the end of the segment and standards for drinking water use are met after the confluence with the Pecos River. Nutrient levels are also high in this segment and algal blooms have been occurring frequently in this portion of the river.

Segment 2305 runs from the confluence of the Pecos River in Ramsey Canyon in Val Verde County to the International Amistad Dam along the Rio Grande and from the confluence of Little Satan Creek in Val Verde County to the Dam along the Devils River, a total length of 75 miles (120 km). The designated uses are contact recreation, high aquatic life use, fish consumption, and public water supply. This segment has four monitoring stations on the lake. Our partners at the Amistad National Park Service are currently collecting data in the marinas to assess potential impacts on the lake. All of the designated uses are being met, but there is a total phosphorous concern in the reservoir at international buoy #1. Due to good rains in the United States and Mexico and to conservation efforts last year, the reservoir is close to conservation levels.

Segment 2309 is the Devils River, which is 67 miles (108 km) long, from its origin in Sutton County to the confluence of Little Satan Creek. The designated uses for the Devils River are exceptional aquatic life, contact recreation, fish consumption, and public water supply. All uses are fully supported, as water quality is very high. Typical TDS values are below 500 mg/l and there are few impactors along this river. There are three monitoring stations in this segment.

Special Studies

A special study in Big Bend to source track nutrient and salinity contamination between Presidio and Amistad Dam will be conducted this year by Big Bend NPS, the USGS, TCEQ and the CRP. To obtain a comprehensive assessment of water quality conditions, two real-time water quality monitoring stations in the Rio Grande within Big Bend National Park have been installed. Three additional stations will be installed in the reach of focus during the year as part of the study. The study will also monitor water quality and quantity from several springs along the river to assess their impact on the Rio Grande. High bacteria, salt, and nutrient levels threaten the ecosystem and recreational activities

along the Rio Grande in Big Bend. The purpose of the study will be to quantify water flows by identifying gaining and losing reaches and to characterize nutrient loadings from Presidio to Lake Amistad.

Partners

USIBWC American Dam Office – collects water quality samples at five sites in segments 2314, 2308, and 2307 around El Paso.

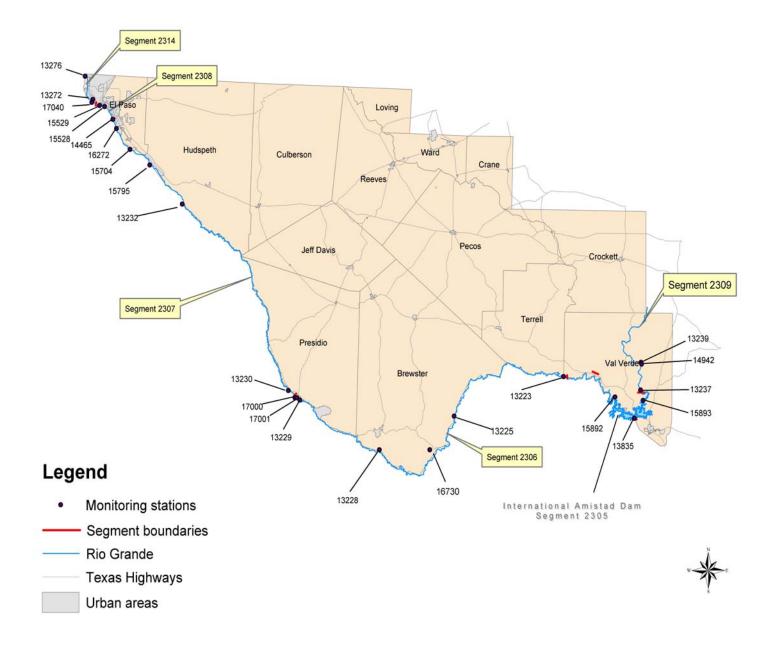
El Paso Water Utilities – provides laboratory analysis of water quality samples collected by the USIBWC American Dam Office and special samples collected in the El Paso area.

El Paso Community College – conducting special studies on bacteria in the El Paso area.

University of Texas at El Paso – collects water quality samples at Fabens and San Elizario, Texas and conducts special studies on riparian habitat in the El Paso area.

TCEQ El Paso Office – collects water quality samples throughout the upper Rio Grande from El Paso to Big Bend.

USIBWC Presidio Office – collects water quality samples around Presidio.


Big Bend National Park Service – collects water quality samples and conducts special studies in the Big Bend area.

USIBWC Amistad Dam Office – collects water quality samples in the International Amistad Reservoir.

Amistad National Recreation Area National Park Service - collects water quality samples and conducts special studies in Lake Amistad.

FY2006 UPPER RIO GRANDE MONITORING STATIONS

RIVER	Region	LAT	LONG	STATION DESCRIPTION	STATION	Metals	Oıg.	Metals	CONV	Tox.	Bacteria	Fbw	FIELD
SEGMENT	_				ID.#	Water	Water	Sed.					
2305	13	29460	-101.060	AM ISTAD RESERVOIR AT BUOY #1	13835				4		4		4
2305	13	29.625	-101 251	AM ISTAD RESERVOIR RID GRANDE ARM AT BUOY #28	15892			2	4		4		4
2305	13	29.601	-100 976	AM ISTAD RESERVOIR DEVILS RIVER ARM AT BUOY DRP	15893			2	4		4		4
2306	13	29.780	-101.760	R ID GRANDE AT FOSTER RANCH W EST OF LANGTRY OFF HW Y 90 W	13223	8	8	10	10		2	10	10
2306	6	29450	-102 830	RID GRANDE AT FM 2627 (GERSTACKER BRIDGE)BELOW BIG BEND	13225				4		4	4	4
2306	6	29180	-103.060	RID GRANDE AT RID GRANDE VILLAGE IN BIG BEND NATONAL PARK	16730				8		8	8	8
2306	6	29167	-103 554	R ID GRANDE AT THE MOUTH OF SANTA ELENA CANYON	13228				12		12	12	12
2306	6	29 533	-104 350	RID GRANDE BELOW RID CONCHOS CONFLUENCE NEAR PRESIDID	13229				12		12	12	12
2306	6	29 533	-104.350	RID GRANDE BELOW RID CONCHOS CONFLUENCE NEAR PRESIDID	13229	8	8	8	8			8	8
2306	6	29543	-104.377	RID GRANDE AT PRESIDID RAILROAD BRIDGE	17000						8	8	8
2306	6	29.557	-104.384	RID GRANDE AT PRESIDID OJINAGA VEHICLE BRIDGE	17001						8	8	8
2307	6	29.604	-104 467	R D GRANDE 24 MLUPSTREAM FROM R D CONCHOS CONFLUENCE	13230				12		12	12	12
2307	6	31.025	-105 594	R ID GRANDE AT NEELY CANYON , SOUTH OF FORT QUIIMAN	13232	2			4		4	4	4
2307	6	31317	-105.936	R D GRANDE AT ALAMO CONTROL STRUCTURE, 9.7 KM UPSTREAM OF FORT HANCOCK PORT OF ENTRY	15795	10	2		12	2	12	12	12
2307	6	31.430	-106 142	R D GRANDE AT GUADALUPE POINT OF ENTRY BRIDGE AT FM 1109 W EST OF TORNILLO	15704	2	2		8		8	8	8
2307	6	31.587	-106 289	R D GRANDE AT SAN ELIZAR D ,500M UPSTREAM OF CAPOMO ROAD END OF PAVEMENT AND 102 KM DOWNSTREAM OF ZARAGOSA INTERNATIONAL BRIDGE	16272	2	2		8		8	8	8
2308	6	31,658	-106 329	R ID GRANDE AT RIVERS IDE CANAL 1.8 KM DOWINSTREAM OF ZARAGOSA INTLERIDGE	14465	12	12		12		12		12
2308	6	31.753	-106 419	R ID GRANDE 13 KM DOW NSTREAM FROM HASKELL ST.W W TP OUTFALL	15528	12	12		12		12	12	12
2308	6	31.760	-106 470	R D GRANDE 24 KM UPSTREAM FROM HASKELLST.WWTPOUTFALL,SOUTH OF BOW E HIGH SCHOOL FOOTBAL STADIUM IN EL PASO	15529	12	12		12		12	12	12
2309	13	29.683	-101.000	DEVILS RIVER AT PAFFORD CROSSING NEAR COMSTOCK	13237				4		4	4	4
2309	13	29 <i>9</i> 00	-100 998	DEVILS RIVER ON DEVILS RIVER STATE NATURAL AREA 1.7 KM UPSTREAM OF DOLAN CREEK	13239				4		4	4	4
2309	13	29.886	-100.992	DOLAN SPRINGS 100 YDS.UPSTREAM OF CONFLUENCE WITH DEVILS RIVER IMMEDIATELY UPSTREAM OF ROAD CROSSING	14942				4		4	4	4
2314	6	31,803	-106 540	R ID GRANDE AT COURCHESNE BR IDGE , 1.7 M IUPSTREAM FROM AMERICAN DAM	13272	12	12		12		12	12	12
2314	6	31.780	-106 550	R ID GRANDE AT ANAPRA BR IDGE	17040						12		12
2314	6	31,981	-106.631	RID GRANDE UPSTREAM OF EAST DRAIN	13276				4		4	4	4

MIDDLE RIO GRANDE BASIN

Introduction


The middle Rio Grande sub-basin consists of that portion of the river flowing from just below International Amistad Reservoir to just below International Falcon Reservoir and also includes San Felipe Creek. This 303-mile (487-km) stretch of the river flows past five counties in Texas and the Mexican states of Coahuila, Nuevo Leon, and Tamaulipas. Del Rio, Eagle Pass and Laredo along with Mexican sister cities Ciudad Acuña, Piedras Negras, and Nuevo Laredo comprise the bulk of the populations living along the Rio Grande in this reach. Laredo, in particular, is one of the fastest growing cities in the country. Increased trade with Mexico, manufacturing growth, and tourism have contributed to population increases in the area.

Overall water quality in the middle Rio Grande subbasin has been stable or has shown improvement over the last few years. Water impounded behind Amistad Dam slows in velocity and much of the suspended solids carried from the upper Rio Grande sub-basin settles. Water in the middle Rio Grande is used for irrigation and increasingly for municipal use. Most municipalities along the river are dependent on surface water for domestic and industrial use. Del Rio, TX is the only major city that relies on groundwater for its water needs.

Water Quality Review

Segment 2304 runs from Amistad Dam in Val Verde County to the confluence of the Rio Salado (Mexico) in Zapata County, a length of 226 miles (364 km). The water body uses for this segment are high aquatic life use, contact recreation, general uses, fish consumption, and public water supply use. The public water supply, fish consumption, and general uses are fully supported.

The standard for bacteria was not met from below Del Rio to the end of the segment indicating a concern for contact recreation. There is a concern for phosphorous from Del Rio to Laredo and there is also a concern for ammonia in Laredo. Ambient toxicity, a

Water impounded behind Amistad Dam.

test to determine the presence fo a contaminant at levels that affect aquaticsurvival and reproducibility of insects and fish, was noted as failing in previous years downstream of Del Rio, TX. This part of the river will continue to be identified as not meeting aquatic life use due to this issue until additional data can be collected to demonstrate otherwise. There are 21 monitoring stations in this segment primarily located within the populated areas along the river.

Segment 2303 runs from the confluence of the Rio Salado (Mexico) in Zapata County to Falcon Dam in Starr County, a length of 68 miles (109 km). Falcon reservoir, like Amistad, is used for recreation, water supply, and hydroelectric power generation. The heavy rains in the United States and Mexico have raised the storage in Falcon to near conservation capacity.

The designated uses for the reservoir include contact recreation, high aquatic life use, fish consumption, and

Training partners on Doppler flow measurements in the raging waters of Manadas Creek.

public water supply use. The public water supply and general uses are fully supported. The high aquatic life use, contact recreation and fish consumption uses were not assessed. There is limited data for bacteria but the available data shows elevated bacteria levels around the Zapata Water Treatment Plant intake. There are three monitoring stations in this segment.

Segment 2313, San Felipe Creek, is a 9-mile (15-km) long stretch of high quality stream originating in the Del Rio area. Two springs, located within the city limits, make up the San Felipe Creek providing the city with a high quality water supply for drinking, fishing, and swimming. Recently, the City of Del Rio, TX constructed a reverse osmosis water treatment facility to protect from high turbidity values in their drinking water supply during heavy rain events.

The segment is designated for high aquatic life use, contact recreation, general use, fish consumption, and for public water supply use. All uses were fully supported except for fish consumption, which was not assessed due to lack of fish tissue data. This creek has a positive effect on the Rio Grande. Water quality is very high and reduces some of the loading in the Rio Grande as it travels downstream to other communities. There are three monitoring stations in San Felipe Creek.

Partners

USIBWC Amistad Field Office – Collects field data, flow and water samples in segment 2304.

USIBWC Falcon Field Office - Collects field data and water samples in segment 2303.

City of Laredo Environmental Services Department - collects field data and water samples in Manadas Creek in segment 2304.

City of Laredo Health Department – Collects bacteriological samples at eight sites around Laredo, TX.

Rio Grande International Study Center – Collects field data and water samples in segment 2304.

TCEQ San Antonio Office – Collects field data and water samples in segment 2304.

TCEQ Laredo Office - Collects field data and water samples in segment 2304.

FY 2006 MIDDLE RIO GRANDE MONITORING STATIONS

R IVER SEGMENT	Region	LAT	LONG	STATION DESCR PTION	STATION ID.#	Metals Water	Ong. Water	Metals Sed.	Toxiziy	CONV	Bacteria	Fbw	FELD
2303	16	26 8644	-99.308	FALCON LAKE AT INTERNATIONAL BOUNDARY MONUMENT #1	13189					4	4		4
2303	16	27.043	-99.444	FALCON RESERVOIR AT SAN YGNACID W TP INTAKE, 350M DWINSTR FROM US B83 BRIDGE	15818					2	2		2
2304	16	27 265	-99.454	RIO GRANDE AT WEBB ZAPATA COUNTY LINE	15817	2		2		12	12	12	12
2304	16	27.404	-99.487	R ID GRANDE AT PIPELINE CROSSING, 13 9 KM BELOW LAREDO	13196	8	8	8		8	12	8	8
2304	16	27.330	-99 510	R ID GRANDE AT R ID BRAVO , 0 5KM DW NSTR OF THE COMMUNITY OF EL CEN IZO	15816						12		
2304	16	27 430	-99 <i>.</i> 490	RID GRANDE AT MASTERSON RD IN LAREDO,99KM DOW NSTREAM OF INTL BRIDGE#1 WEST BRIDGE)UPSTR SOUTHSIDE WWTP AND UPSTR NUEVO LAREDO WWTP	15815						12		
2304	16	27 499	-99 507	RD GRANDE AT INTERNATIONAL BRIDGE #2 EAST BRIDGE) IN LAREDO	15814				2	4	12	4	4
2304	16	27 500	-99.510	RID GRANDE 30 METERS UPSTREAM OF US 81 BRIDGE (CONVENT AVENUE) IN LAREDO	13201						12		
2304	16	27 523	-99 524	RIO GRANDE LAREDO WATER TREATMENT PLANT PUMP INTAKE	13202	4		4		4	12	4	4
2304	16	27 570	-99 510	R ID GRANDE AT CP&L POW ER PLANT INTAKE	15813						12		
2304	16	27 580	-99 500	MANADAS CREEK AT FM 1472 NORTH OF LAREDO	13116	4		4		4	4	4	4
2304	16	27 597	-99.533	RID GRANDE BELOW WORLD TRADE BRIDGE	17410	4		4		4	4	4	4
2304	16	27.702	-99.754	RID GRANDE AT THE COLOMBIA BRIDGE, 2.7 KM UPSTREAM OF THE DOLORES PUMP STATION, 45.1 KM UPSTREAM OF THE LAREDO W TP INTAKE	15839					4	12	4	4
2304	13	27.933	-99 924	R ID GRANDE AT APACHE RANCH	17596					4	4	4	4
2304	13	28346	-100.310	R D GRANDE AT BW C W E R DAM 6 M LSOUTH OF EL ND D , 0 & M LDOW NSTREAM OF CUERVO CREEK	15274					4	4	4	4
2304	13	28.663	-100 500	RD GRANDE NEAR IRRIGATION CANAL LATERAL 50 US 277 BRIDGE IN EAGLE PASS	13205					12	12	12	12
2304	13	29 292	-100.876	R ID GRANDE, 45 M I. DOW NSTREAM OF DEL R ID AT MOODY RANCH	13560	4		2		12	12	12	12
2304	13	29 326	-100.931	RIO GRANDE 128MI.BELOW AMISTAD DAM, NEAR GAGE,340M UPSTREAM OF US 277 BRIDGE IN DELRID	13208					6	6	6	6
2304	13	29 424	-101.041	RID GRANDE 3.4 KM DOWNSTREAM OF AM ISTAD DAM ABOVE W EIR DAM (BWC GAGE #08-4509.00)	15340	6	6	6		8	2	8	8
2313	13	29.331	-100.889	SAN FELIPE CREEK AT GUYLER CONFLUENCE W IIH THE RID GRANDE	13270					2	2	2	2
2313	13	29369	-100.884	SAN FELIPE CREEK AT BLUE HOLE FLOOD GATES, IN PARK BETW EEN US 90 BRIDGE AND SOUTHERN PACIFIC RR BRIDGE IN DEL RID 50M DWINSTR OFUS90)	15821					2	2	2	2
2313	13	29 373	-100 885	SAN FELIPE CREEK AT WEST SPRINGS, NEAR WEST WELLS IN DEL RID (IN WEST CHANNEL OF CREEK, 0.5 KM UPSTREAM FROM US 90 BRIDGE)	15820					2	2	2	

LOWER RIO GRANDE BASIN

Introduction

The lower Rio Grande sub-basin stretches from just below Falcon Dam to the mouth of the Rio Grande at its confluence with the Gulf of Mexico. This portion of the river is divided into two segments, 2301 and 2302. This 280-mile (451-km) stretch of the Rio Grande runs through Starr, Hidalgo, and Cameron Counties of Texas and forms the border between those counties and the Mexican State of Tamaulipas. Major cities in the sub-basin include McAllen, Harlingen, and Brownsville on the United States side of the river and Matamoros and Reynosa on the Mexican side. The largest portion of water used in the area is consumed by agriculture. However, the 2000 census shows the lower Rio Grande Valley has the fourth largest increase in population in the country. Increased municipal and industrial demands will only further strain a limited resource already taxed by previous drought conditions and high agricultural use. Groundwater in the area is brackish resulting in the need for the building of a desalinization plant.

In 2004, increased rainfall and water deliveries from Mexico have allowed reservoirs to increase storage. Research is also being done on increased storage of the river by construction of a weir around Brownsville and desalinization of groundwater to supplement drinking water supplies in the lower valley.

Invasive aquatic weeds such as hydrilla and water hyacinth were an issue in the lower Rio Grande. These aquatic plants choke portions of the river preventing boat traffic, impeding water flow and increase water loss through consumption and evapotranspiration. Mechanical removal and biological control, using triploid grass carp, reduced the problem significantly. Heavy rains also helped push the aquatic plants into saline waters where they cannot survive. At present, the problem is not the issue that it was in 2003. Continued maintenance and normal river flows should keep the problem from arising again.

The Rio Grande as it flows along the Sabal Palm Sanctuary.

Water Quality Review

Segment 2302 is classified as a freshwater stream with a length of 231 miles (371 km) and contains 13 monitoring stations. Its designated uses are high aquatic life use, contact recreation, general use, fish consumption, and public water supply. A portion of this segment (from Pharr International Bridge to downstream of Santa Ana National Wildlife Refuge) contains an impairment for contact recreation use due to high bacteria levels. The high bacteria levels were primarily reported from sampling station 13180 (Rio Grande below El Anhelo Drain). This station has limited data and has not had any data collected for several years. Stations upstream and downstream of this site contain recent data and do not exhibit this same impairment. Sample collection at station 13180 was recently resumed in order to determine if the impairment still exists. Preliminary data suggests that

The end of the line for the Rio Grande as it enters the Gulf of Mexico.

there is no impairment at this site, but data will be collected every month at this site for at least two years to determine if this is the case. This same area also shows increased chloride, sulfate, and phosphorous levels indicating potential wastewater influences that can adversely affect the public water supply.

Segment 2301 extends from the confluence of the Rio Grande with the Gulf of Mexico to a point 6.7 miles (10.8 km) downstream of the International Bridge in Cameron County. This 49-mile (73-km) long segment is classified as a tidal stream and is designated for exceptional aquatic life use, contact recreation, general use, and fish consumption. All uses are supported, except fish consumption, which has not been assessed.

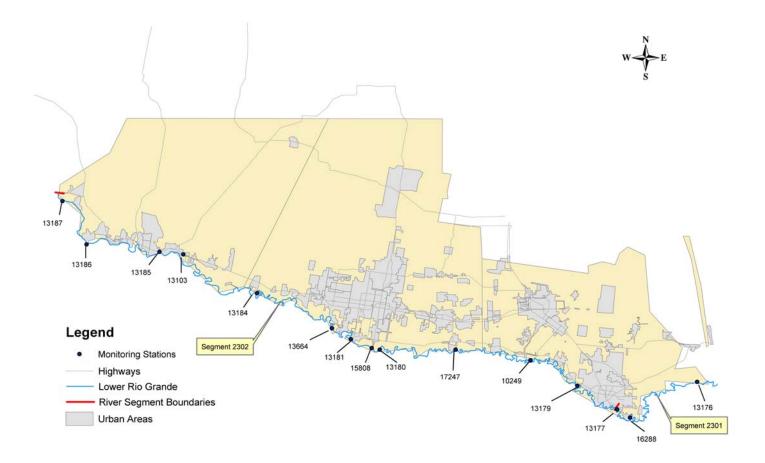
Segment 2301 has two monitoring stations, which are now being collected by our new partners at the University of Texas at

Brownsville and the Sabal Palm Audubon Center and Sanctuary. The only concern at this station is excessive algal growth as indicated by periodic high chlorophyll-*a* levels.

Partners

University of Texas at Brownsville – collects field data and water samples in segments 2301 and 2302

TCEQ Harlingen Field Office – collects field data and water samples in segments 2301 and 2302


USGS - collects field data in segment 2302

USIBWC Mercedes Office – collects field data and water samples in segment 2302

Sabal Palm Audubon Center & Sanctuary - Collects field data and water samples in segment 2301 at the Sabal Palm Sanctuary.

FY2006 LOWER RIO GRANDE MONITORING SCHEDULE

R IVER SEGMENT	R egion	LAT	LONG	STATION DESCRIPTION	STATION ID.#	Metals Water	Ong. Water	Metals Sed.	CONV	Bacteria	Fbw	FIELD
2301	15	25 962	-97 208	R ID GRANDE TIDAL AT SH 4 NEAR BOCA CHICA	13176				4	4		4
2301	15	25 850	-97 414	R ID GRANDE AT SABAL PALM SANCTUARY AT NORTHEAST BOUNDARY OFF PARK ROAD 1 M L SOUTH OF FM 1419 NEAR PALM GROVE	16288				4	4		4
2302	15	25.876	-97 454	RID GRANDE EL JARDIN PUMP STATION, AT LOW WATER DAM 300 FT.BELOW INTAKE	13177	8	8	8	8	8	8	8
2302	15	25.950	-97 576	R ID GRANDE NEAR R IVER BEND BOAT RAMP, 8 KM W EST OF BROWNSVILLE ON US 281	13179				4	4		4
2302	15	26.030	-97.720	R ID GRANDE 63 KM DOWNSTREAM FROM SAN BENITO PUMPING PLANT	10249				4	4		4
2302	15	26 .063	-9 7 950	R ID GRANDE 100 METERS UPSTREAM FROM THE FM1015 BR IDGE THAT CROSSES INTO MEXICO AT PROGRESSO	17247				4	4		4
2302	15	26.063	-98 183	RID GRANDE BELOW EL ANHELO DRAIN SOUTH OF LAS MILPAS	13180					8	8	8
2302	15	26.068	-98 208	R D GRANDE 200M UPSTREAM OF PHARR INTERNATIONAL BRIDGE (US 281)	15808				8	8	8	8
2302	15	26.096	-98 272	R D GRANDE INTERNATIONAL BRIDGE AT US 281 AT H DALGO	13181				8	8	8	8
2302	15	26130	-98 330	R ID GRANDE 0.5 M LBELOW AN ZALDUAS DAM , 12.2 M LFROM H IDALGO	13664				8	8	8	8
2302	15	26 240	-98 560	R IO GRANDE AT SH 886 NEAR LOS EBANOS	13184				6	6	6	6
2302	15	26 362	-98.787	ARROYO LOS OLMOS BRIDGE ON US 83 SOUTH OF RID GRANDE CITY	13103				4	4		4
2302	15	26.370	-98 860	R ID GRANDE AT FORT R INGGOLD 1 M L DOW NSTREAM FROM R ID GRANDE C ITY	13185				12	12	12	12
2302	15	26 393	-99.084	RID GRANDE BELOW RID ALAMO NEAR FRONTON	13186				8	8	8	8
2302	15	26 529	-99 158	RD GRANDE 25 MIBELOW FALCON DAM AT DWERSION STRUCTURE	13187	6	6	6	6		6	6

PECOS RIVER BASIN

Introduction

The Pecos River in Texas begins at the Texas – New Mexico state line and is then impounded by Red Bluff Reservoir. Releases from Red Bluff are made in accordance with the Pecos River Compact for distribution to irrigation districts in the basin. The river then flows southeast until it empties into the Rio Grande upstream of International Amistad Dam, a journey of 409 miles (658 km). The Pecos River is divided into three segments: 2312, 2311, and 2310 upstream to downstream.

The heavy drought conditions in the southwest have caused the Pecos River to see episodes of discontinuity. Invasive saltcedar plants have also been linked to reduced water levels and increased salinity in the Pecos River basin. Since 1999, Texas A&M Cooperative Extension (TCE) has been successfully eradicating the species along the Pecos River under a research grant and has received national recognition for their project. Plans are underway to continue the eradication of saltcedar along the entire Pecos River. Due to the success of TCE, other river basins with the same problem have begun similar programs.

Water Quality Review

Segment 2312 is the Red Bluff Reservoir from the Texas – New Mexico state line to the end of the dam, a distance of 11 miles (18 km). Designated uses for this segment are high aquatic life use, fish consumption, and contact recreation. There are two monitoring stations in this segment. Salinity levels in the reservoir are typically over 6,000 mg/l, preventing use as a public water supply and restricting agriculture to salt-tolerant crops. This segment is listed as having a nutrient concern in the middle of the lake and as having harmful algal blooms.

Segment 2311 is located directly below the Red Bluff Reservoir to the confluence of Independence Creek in Crockett/Terrell County, a length of 349 miles (561 km). The designated uses for this segment are aquatic life use, contact recreation, and fish consumption.

The Pecos River as it leaves Red Bluff Reservoir.

There are six monitoring stations along this segment. The salinity continues to increase in the Pecos River in this segment, climbing to as high as 26,000 mg/l. Because of naturally high salt levels, the standards for this segment are also high, therefore, this segment is meeting its standard. There is an aquatic life use concern, however due to impaired aquatic habitat and communities. There are also listed algal blooms as creating a concern.

Segment 2310 runs from the confluence of Independence Creek in Crockett/Terrell County down to the confluence with the Rio Grande in Painted Canyon in Val Verde County, a length of 49 miles (79 km). The designated uses for this segment are contact recreation, public water supply, high aquatic life use, and fish consumption. There are four monitoring stations in this segment.

The Pecos River from the highway US90 bridge looking upstream.

Independence Creek is a high quality stream that provides freshwater input into the Pecos River, bringing salinity values down to drinking water levels. Recent data show abnormally high salinity levels in the Pecos, resulting in this segment having a drinking water impairment due to elevated levels of chloride, sulfate, and TDS.

Special Studies

TCEQ and USIBWC have collaborated to install three realtime water quality monitoring stations on the Pecos River to enhance data normally collected on a quarterly basis. The stations are located at the following locations: Pecos River near Pecos, TX; Pecos River at Coyanosa, TX; and Pecos River 2.3 miles upstream of the Terrell/Val Verde county lines. The continuous monitoring stations are collecting DO, pH, conductivity, temperature, and water depth. The site at Coyanosa, TX is collecting water quantity data as well. Data from these sites are collected at 15 minute intervals and transmitted remotely to the TCEQ. The data is then validated and made available on the TCEQ website at the following address:

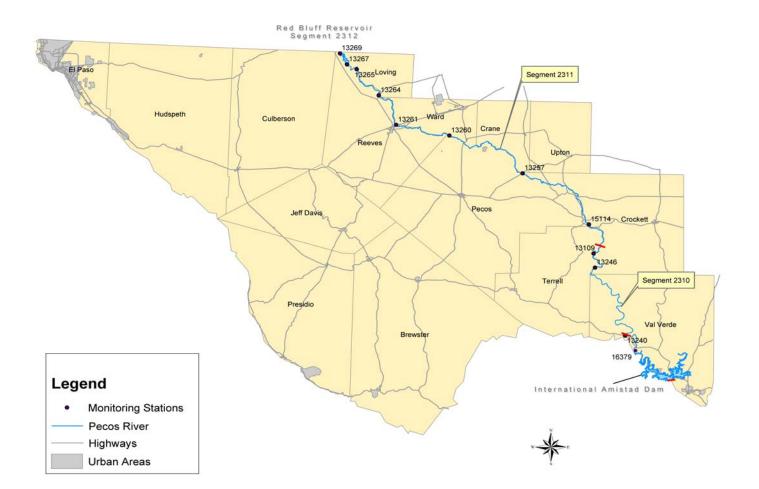
www.tceq.tx.us/compliance/monitoring/water/quality/ data/swqm_realtime_alt.html

Salinity in the Pecos River enters Texas above 5,000 mg/L and climbs to an average value of 20,000 mg/l as the water flows downstream to Girvin. TCE, with support from the USIBWC and other agencies, have begun a special study in the Pecos River to determine all possible sources contributing to the increasing salinity. This study will last three years and will look at salinity inputs from geological sources, vegetation contributions, non-point source contamination, tributary input, and agricultural returns to determine the causes and potential solutions to the increasing salinity values in the Pecos River. This study may also lead to best management practices to reduce the impact to the river and to reduce the high salinity levels in the river.

More information on this project can be found on the web at:

http://pecosbasin.tamu.edu/index.php

Partners


Texas A&M University Cooperative Extension (TCE) – collect water quality samples and condcuts special studies in the Upper Pecos.

TCEQ Midland Office – collects water quality samples at Red Bluff and along the entire Pecos River.

USIBWC Amistad Dam Office – collects water quality samples on the Pecos River as it enters the International Amistad Dam.

FY2006 PECOS RIVER MONITORING SCHEDULE

R IVER SEGMENT	Region	LAT	LONG	STATION DESCRIPTION	STATION ID.#	24 HR DO	Metals Water	Org. Water	Metals Sed.	CONV	Bacteria	Fbw	FELD
2310	13	29.700	-101.360	PECOS RIVER 0.7 MI.DOW NSTREAM FROM US 90W IN VAL VERDE COUNTY	16379					2	2	2	2
2310	13	29.800	-101,450	PECOS R WER AT GAG NG STATDN 74 M L EAST OF LANGTRY,150 M LUPSTREAM FROM CONFLUENCE W ITH R D GRANDE	13240		8	8	8	8		8	8
2310	7	30.338	-101.717	PECOS RIVER 7.52 KM UPSTREAM FROM THE VAL VERDE/TERRELL/CROCKETT COUNTY LINE CONVERGENCE	13246					4	4	4	4
2310	7	30,450	-101.732	NDEPENDENCE CREEK 05 M L DOWNSTREAM FROM JOHN CHANDLER RANCH HEADQUARTERS	13109					4	4	4	4
2311	7	30.681	-101.776	PECOS RIVER 16 MIUPSTREAM OF US 290 BRIDGE,SE OF SHEFFIELD	15114					4	4	4	4
2311	7	31.079	-102.359	PECOS RIVER AT US 67 NE OF GIRVIN	13257					4	4	4	4
2311	7	31.366	-103.004	PECOS RIVER AT FM 1776 SW OF MONAHANS	13260					4	4	4	4
2311	7	31,440	-103 470	PECOS R WER NEAR PECOS, TEXAS	13261					4	4	4	4
2311	7	31.670	-103.630	PECOS RIVER NEAR MENTONE, TEXAS	13264					4	4	4	4
2311	7	31.872	-103.831	PECOS RIVER AT FM 652 BRIDGE NE OF ORLA	13265					4	4	4	4
2312	7	31,908	-103.917	RED BLUFF RESERVOIR ABOVE DAM , NORTH OF ORLA	13267				2	2	2		2
2312	7	31,994	-103.983	RED BLUFF RESERVOIR 1/2 MLSOUTH OF TEXAS -NEW MEXICO BORDER	13269				2	2	2		2

PUBLIC OUTREACH

Basin Advisory Committee

The Basin Advisory Committee (BAC) is a group of private citizens, government agency representatives, citizen groups, and academia who provide input and guidance for the program to ensure issues and concerns in the community are addressed. Input from the BAC assists the CRP in determining what direction the program should take, changes to the monitoring schedule, new monitoring sites, special studies, and dissemination of information. People who are interested in providing input on environmental issues and who would like to be a member of the Rio Grande Basin BAC can contact anyone in the CRP (see page 24 for contacts).

BAC meetings are held once a year around July and August in El Paso, Laredo, and the Lower Rio Grande Valley. These meetings provide the USIBWC CRP with an opportunity to update the committee on recent activities and future plans. The meetings also provide a forum for other agencies and academia to present their programs and research and for everyone at the meeting to provide input into the program.

Texas Watch

The USIBWC CRP has partnered with Texas Watch in the Rio Grande Basin. Texas Watch is a network of trained volunteers and partners who gather information about the natural resources of Texas and ensure the information is available to the general public. Volunteers are trained to collect quality-assured information that can be used to make environmentally sound decisions. Currently, over 400 Texas Watch volunteers collect water quality data on lakes, rivers, streams, wetlands, bays, bayous, and estuaries in Texas. Texas Watch also provides training curriculum and continuing education credits to teachers so they can, in turn, provide future generations with the information necessary to protect our environment. We plan to continue our partnership with Texas Watch and expand the program throughout the basin. Texas Watch and the USIBWC CRP have held meetings

together in Laredo and McAllen to pool our resources and reach a larger group of concerned citizens in the basin. These meetings have been a huge success for the CRP. We plan to continue our partnership with Texas Watch in the coming years and expand the program into the Upper and Lower Rio Grande in cities like El Paso, Brownsville, and McAllen and expand our current program in the Middle Rio Grande in cities like Del Rio and Eagle Pass.

Friends of the Rio Grande

A recent initiative created а sunset as recommendation from the Texas State Legislature mandated TCEQ to create and fund a team called the Friends of the Rio Grande (FORG). The objective of FORG is to promote environmental awareness along the Rio Grande through public outreach and education, organizing volunteer cleanups along the river, water quality monitoring, and recognition of exemplary

environmental efforts.

In partnership with TCEQ, the USIBWC CRP administered the FORG program in Texas fiscal years 2004 and 2005. In 2004, TCEQ and the USIBWC CRP received over a dozen proposals for assistance with public education and outreach totalling over \$80,000 in requests. The FORG committee then reviewed the proposals and awarded assistance based on compliance with the FORG mandates, capabilities, and availability of funds.

Many different types of groups received assistance including schools, museums, environmental awareness groups, and parks. They all had one goal, however, and that was to educate the public on the environment and how to protect this valuable resource. In recognition of their efforts to promote water quality awareness and stewardship within the basin, The FORG partners received commemorative plaques presented at the annual Basin Advisory Committee meetings held in El Paso and Mercedes. In the future, the FORG program will continue to support our partners in their endeavors and create new outreach partnerships.

To learn more about the program, the partnerships forged, and the different projects that were funded; visit the FORG website at:

www.friendsoftheriogrande.com

Coordinated Monitoring Meetings

Coordinated Monitoring Meeting are held annually with our partners in the basin to coordinate water quality monitoring activities for the upcoming year. During these meetings, the monitoring schedule is reviewed to ensure comprehensive spatial coverage of the basin's water quality monitoring network, on a segment by segment basis, in order to collect the data necessary to properly assess water quality condition throughout the basin. Special studies are also discussed to provide for more intensive data collection in areas where specific water quality concerns need to be addressed. Meetings are held in the spring throughout the basin in Midland, El Paso, Laredo, and Harlingen.

The USIBWC acting Commissioner Carlos Marin presents FORG awards at the BAC meeting in Mercedes

TCEQ El Paso Regional Director Archie Clouse presents FORG awards at the BAC meeting in El Paso.

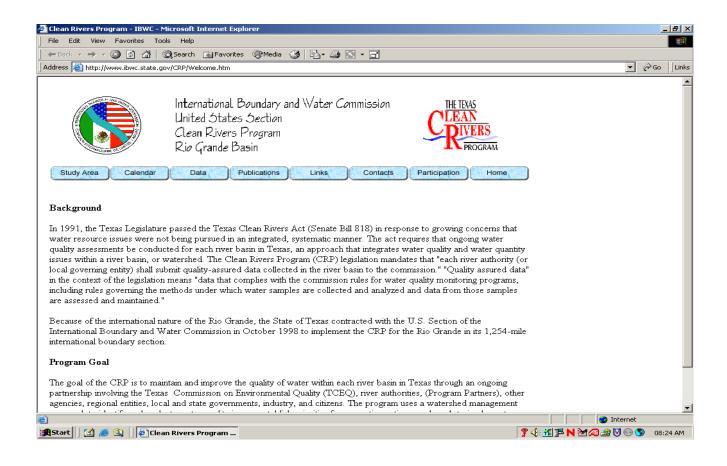
Annual Coordinated Monitoring Meeting in Harlingen, TX.

The USIBWC CRP website can be found at http://www.ibwc.state.gov/CRP/Welcome.htm. Below is a list of the website pages and the information provided.

Study Area – This page contains an interactive map of the Rio Grande Basin. By clicking on one of the sub-basins, a detailed map of the area will be displayed, containing information about our monitoring sites.

Calendar – We will post meetings that we will be attending or have attended and updates on current activities in the basin on this page.

Data - TCEQ Data Link - will get you to the TCEQ water quality database for the State of Texas.

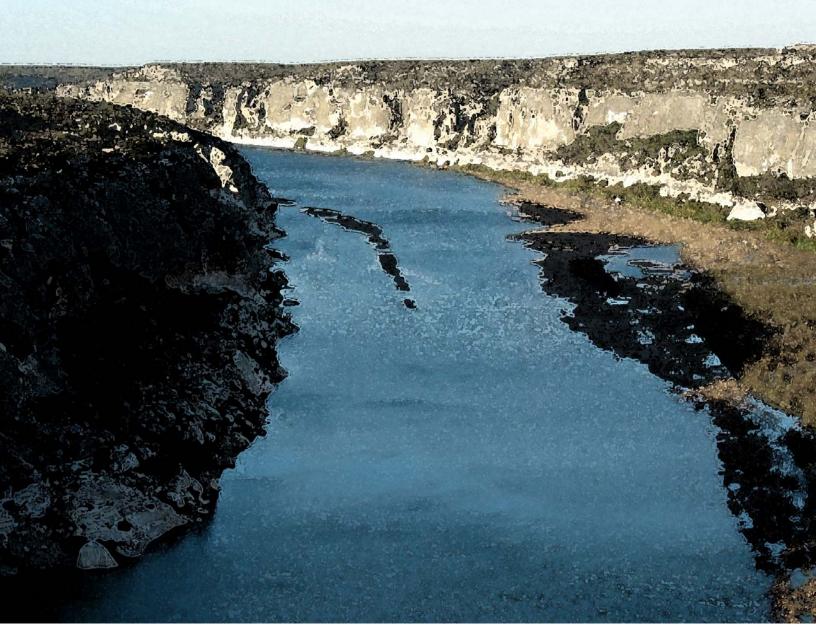

Data – USIBWC CRP Data - will take you to our water quality data page where you can acquire an Excel file of the water quality data by station since 1995. You can also find a link to the monitoring schedule website (cms.lcra.org), definition of monitoring parameters, available data on metals analysis in the basin, and the laboratory specifications.

Publications - contains our Basin Highlights Reports and our five-year Basin Summary Report in PDF format.

Links - contains links to other planning agencies in Texas, the Rio Grande basin partners, and other related links.

Contacts - contains contact information for the USIBWC CRP personnel.

Participation - contains information on participating in the Clean Rivers Program and/or Texas Watch.


CONTACTS

WAYNE BELZER PROGRAM MANAGER (915) 832-4703

NANCY N. HANKS, PH.D. QUALITY ASSURANCE OFFICER (915) 832-4794

ERICA HOWELL Administrative assistant (915) 832-4779

CORY HORAN TCEQ PROJECT MANAGER (512) 239-4026

International Boundary and Water Commission 4171 N. Mesa, C-100 El Paso, TX 79902 (915) 832-4703 fax: (915) 832-4166 www.ibwc.state.gov/CRP/welcome.htm

