WATER QUALITY IN THE LOWER RIO GRANDE

ANNUAL WATER QUALITY UPDATE AND BASIN ADVISORY MEETING

LESLIE GRIJALVA, USIBWC TEXAS CLEAN RIVERS PROGRAM

AUGUST 8, 2018, MERCEDES, TX
WHAT IS THE IBWC TEXAS CLEAN RIVERS PROGRAM?

- State fee-funded program created in 1991
- IBWC integrated water quality monitoring program with TCEQ in 1998
- USIBWC collects ambient water quality for entire reach of the international portion of the Rio Grande
 - Samples are collected monthly or quarterly by IBWC, TCEQ Regional Offices, and volunteer groups such as City of Brownsville
 - Sample and analysis was standardized to ensure data quality

Monitoring sites on the Rio Grande
- USIBWC CRP – 74 SITES
- TCEQ – 36 sites
 - 9 DUPLICATE
- Total 94 stations

Provide data so that corrective actions can be prioritized and implemented

Identify & Evaluate Water Quality Issues
WHAT DOES CRP DO?

• Water Quality Monitoring
 • Routine Monitoring
 • Special Studies

• Water Quality Assessment and Reports
 • Annual Basin Highlights Report
 • Basin Summary Report (5-year report)
 • Watershed Characterizations
 (1st report 2016)
OTHER CRP ACTIVITIES

• PUBLIC PARTICIPATION, OUTREACH, AND ENVIRONMENTAL EDUCATION
WHAT DATA DOES CRP COLLECT?

• ROUTINE PARAMETERS
 • FIELD DATA (PH, DO, EC, TEMP)
 • CONVENTIONALS (NUTRIENTS, SALTS, BOD, TDS)
 • BACTERIA

• NON-ROUTINE
 • ORGANICS IN SEDIMENT
 • METALS IN WATER AND SEDIMENT
LOCAL PARTNERSHIPS- LOWER RIO GRANDE

Help monitor and collect water samples, and analyze water samples:

- USIBWC Mercedes field office
- USIBWC Falcon Dam field office
- UTRGV- EDINBURG
- Brownsville PUB
- USGS
- TCEQ Harlingen
- TCEQ Continuous WQ Monitoring
WHAT HAPPENS TO THE DATA?

CRP and TCEQ regional offices collect and review data

Submit Data to TCEQ

TCEQ compares data to Standards

Segments not meeting standards are listed as impaired on the 303d List
TEXAS SURFACE WATER QUALITY STANDARDS

FOR THE LOWER RIO GRANDE

<table>
<thead>
<tr>
<th>SEGMENT</th>
<th>USES</th>
<th>TDS (mg/l)</th>
<th>Bacteria (#/100 ml)</th>
</tr>
</thead>
</table>
| 2301 – Tidal | • Primary Contact Recreation
 | | |
| | • Excellent Aquatic Life | -- | 35 Entero |
| 2302 – Below Falcon | • Primary Contact Recreation
 | | |
| | • High Aquatic Life
 | | |
| | • Sole-source public drinking supply | 880 | 126 E. Coli |
| 2303 – Falcon Reservoir | • Primary Contact Recreation
 | | |
| | • High Aquatic Life
 | | |
| | • Sole-source public drinking supply | 1,000 | 126 E. Coli |
INTEGRATED REPORT AND 303D LIST

IMPAIRMENTS ➔ DOES NOT MEET WATER QUALITY STANDARDS

CONCERNS ➔ CLOSE TO NOT MEETING WATER QUALITY STANDARDS, OR HAVE HIGH VALUES OF PARAMETERS FOR WHICH THERE ARE NO STANDARDS
WATER QUALITY IMPAIRMENTS AND CONCERNS IN THE LOWER RIO GRANDE BASIN

<table>
<thead>
<tr>
<th>Segment</th>
<th>Segment Name</th>
<th>Parameter(s) Impaired</th>
<th>Year First Listed</th>
<th>Assessment Category</th>
<th>Parameter(s) of Concern</th>
<th>Level of Concern²</th>
</tr>
</thead>
<tbody>
<tr>
<td>2303</td>
<td>International Falcon Reservoir</td>
<td>No Impairments</td>
<td>--</td>
<td>--</td>
<td>Ammonia, Nitrate, Total Phosphorus, Toxicity in Water</td>
<td>CS, CS, CS, CN</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Segment</th>
<th>Segment Name</th>
<th>Parameter(s) Impaired</th>
<th>Year First Listed</th>
<th>Parameter(s) of Concern</th>
<th>Level of Concern²</th>
</tr>
</thead>
<tbody>
<tr>
<td>2302</td>
<td>Below International Falcon Reservoir</td>
<td>$E. coli$</td>
<td>1996</td>
<td>Ammonia, Chlorophyll-a, Depressed DO</td>
<td>CS, CS, CS</td>
</tr>
<tr>
<td>2302A</td>
<td>Los Olmos Arroyo</td>
<td>$E. coli$</td>
<td>2004</td>
<td>Chlorophyll-a</td>
<td>CS</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Segment</th>
<th>Segment Name</th>
<th>Parameter(s) Impaired</th>
<th>Year First Listed</th>
<th>Assessment Category¹</th>
<th>Parameter(s) of Concern</th>
<th>Level of Concern²</th>
</tr>
</thead>
<tbody>
<tr>
<td>2301</td>
<td>Rio Grande Tidal</td>
<td>No Impairments</td>
<td>--</td>
<td>--</td>
<td>Enterococci, Chlorophyll-a nitrate</td>
<td>CN, CS, CS</td>
</tr>
</tbody>
</table>
BACTERIA ISSUES IN THE LOWER RIO GRANDE

• DECREASING BACTERIA IN THE VALLEY
 • DECREASING IN BROWNSVILLE SINCE 2008
 • MOST LIKELY DUE TO WASTEWATER TREATMENT PLANT GOING ONLINE IN 2008 IN MATAMOROS.
 • BACTERIA ISSUES IN THIS SECTION OF THE RIVER ARE IMPROVING

• OTHER AREAS SHOW INCREASING LEVELS OF BACTERIA
 • RIO GRANDE CITY
 • HIDALGO
 • McALLEN
SALINITY IN THE LOWER RIO GRANDE

• HIGH SALINITY HAS RECENTLY BEEN REPORTED, PARTICULARLY AFTER THE RECENT FLOOD EVENT
 • HIGH SALINITY VALUES RESULT IN THE NEED TO RELEASE MORE WATER TO DILUTE

• POSSIBLE CAUSES
 • RECENT FLOOD EVENT IN JUNE, RESULTING IN SIGNIFICANT RUNOFF INTO THE RIVER.
 • RUNOFF BRINGS WITH IT EVERYTHING ON ROADS, AGRICULTURAL FIELDS, ETC.
 • IRRIGATION RETURN FLOWS COUPLED WITH PREVIOUSLY LOW FLOWS
 • FEWER RELEASES FROM FALCON RESERVOIR
 • OTHER INPUTS INTO THE RIVER (MORILLO DRAIN)
UPSTREAM OF RIO GRANDE CITY

Rio Grande near Fronton Texas: Station 13186

- Total Dissolved Solids (mg/l)
- E.coli (MPN/100mL)
- Flow (cfs)

TDS Value (mg/l)
- Green line: Total Dissolved Solids (mg/l)
- Red line: Standard
- Blue line: Flow (cfs)

E.coli (MPN/100mL)
- Green line: E.coli (MPN/100mL)
- Red line: E.coli Standard (126 MPN/100mL)
- Blue line: Flow (cfs)
Rio Grande River at Fort Ringgold, near Rio Grande City: Station 13185

TDS Value (mg/L)

Flow (cfs)

E.coli (MPN/100mL)

Rio Grande River at Fort Ringgold, near Rio Grande City: Station 13185

E.coli Standard (126 MPN/100mL)
UPSTREAM OF MCALLEN

Rio Grande Downstream of Anzalduas Dam: Station 13664

- TDS Value (mg/L)
- TDS Standard (880 mg/L)
- Flow (cfs)

- E.coli (MPN/100mL)
- E.coli Standard (126 MPN/100mL)
- Flow (cfs)
DOWNSTREAM OF McALLEN

Rio Grande River at Hidalgo: Station 13181

TDS Value (mg/L)

- Green line: TDS
- Red line: Standard
- Blue line: Flow

Flow (cfs)

TDS Value (mg/L)

- Green line: E.coli (MPN/100mL)
- Red line: E.coli Standard (126 MPN/100mL)
- Blue line: Flow (cfs)
DOWNSTREAM OF MCALLEN

Rio Grande Upstream of Pharr International Bridge: Station 15808

- **TDS Value (mg/L)**
 - TDS Standard (880 mg/L)

- **Flow (cfs)**

E.coli (MPN/100mL)
- E.coli Standard (126 MPN/100mL)

- **Flow (cfs)**
NORTH OF BROWNSVILLE

Rio Grande at Riverbend Golf Course West of Brownsville: Station 13179

- **TDS (mg/L)**
- **TDS Standard (880 mg/L)**
- **E.coli (MPN/100mL)**
- **E.coli Standard (126 MPN/100mL)**
WHAT DOES THE DATA TELL US?

• BACTERIA COUNTS ARE DECREASING IN THE BROWNSVILLE AREA, BUT INCREASING UPSTREAM NEAR RIO GRANDE CITY AND MCALLEN.
 • MAY BE NON-POINT SOURCE RATHER THAN A POINT SOURCE.
 • RAINFALL, STORM WATER RUNOFF, AND AGRICULTURAL RETURN FLOWS MAY ALL BE CONTRIBUTING FACTORS.
 • URBAN AREAS HAVE GROWN AND INCREASING POPULATION MAY ALSO BE CONTRIBUTING TO THE ISSUE.

• TDS LEVELS TEND TO RISE WHEN FLOWS ARE LOW, AND DECREASE WHEN FLOWS ARE HIGH.
 • THEY ARE ALSO HIGHER AS WE GET FURTHER DOWNSTREAM

• CURRENTLY, IN CRP’S MONITORING FRAMEWORK, THE INCREASING SALINITY VALUES ARE SOMETHING WE ARE MONITORING CLOSELY
 • NO CURRENT IMPAIRMENT OR CONCERN EXISTS FOR SALINITY IN THIS REACH UNDER THE 303D LIST.
 • AVERAGE IS STILL UNDER THE WATER QUALITY STANDARD OF 880 MG/L.

• THE PROGRAM CONTINUES TO MONITOR AT THE STATIONS ON A ROUTINE BASIS AND PROVIDES THE DATA TO THE TCEQ.
RIO GRANDE WATER QUALITY

• RECENT TIMELINE- SEPTEMBER 10, 2013, IBWC TERMS OF REFERENCE “UNITED STATES-MEXICO JOINT COOPERATIVE ACTIONS IN THE LOWER RIO BRAVO/RIO GRANDE RIVER BASIN”

• GENERAL OBJECTIVE- TO ESTABLISH, UNDER THE IBWC, A GROUP FROM THE UNITED STATES AND MEXICO TO EXPLORE BORDER SANITATION AND WATER QUALITY MANAGEMENT

• SPECIFIC OBJECTIVES-
 • IMPROVE SALINITY MANAGEMENT FOR RETURN FLOWS INTO THE LOWER RIO GRANDE
 • ADDRESS CURRENT AND FUTURE WATER QUALITY ISSUES OF THE LOWER RIO GRANDE
 • IMPLEMENT MANAGEMENT PROCEDURES AND PROGRAMS THAT ENABLE AFFECTED PARTIES TO MANAGE WASTEWATER DISCHARGES AND IMPROVE WATER QUALITY CONDITIONS
 • EVALUATE CURRENT WASTEWATER INFRASTRUCTURE AND MANAGEMENT STRATEGIES FOR THE POTENTIAL FOR IMPROVING THE EFFLUENT QUALITY
 • EVALUATE NEW MECHANISMS AND STRATEGIES FOR SYSTEM OPERATIONS THAT COULD IMPROVE AMBIENT WATER QUALITY
 • BASED ON THE RESULTS OF THE EVALUATIONS, IMPLEMENT PROGRAMS AND PROJECTS TO MEET THESE OBJECTIVES AS APPROPRIATE, AND RESULT IN MEASURABLE AND SUSTAINABLE IMPROVEMENT IN WQ
LOWER RIO GRANDE WATER QUALITY INITIATIVE

- SEPTEMBER 10, 2013 - LOWER RIO GRANDE/RIO BRAVO WATER QUALITY INITIATIVE, PILOT PROJECT

- INITIAL PROJECT TO DEVELOP A BINATIONAL WATER QUALITY PLANNING EFFORT FROM FALCON INTERNATIONAL DAM TO THE GULF OF MEXICO TO IMPROVE AND PROTECT WATER QUALITY (FOCUS ON BACTERIA BUT INCLUDED SALINITY SOURCES AS ANOTHER EFFORT)

 - TECHNICAL APPROACH
 - HISTORICAL DATA REVIEW
 - IDENTIFICATION OF DATA GAPS
 - DATA COLLECTION
 - DATA ANALYSIS AND MODELING
 - IDENTIFYING FEASIBLE OPTIONS TO IMPROVE WATER QUALITY
 - LEGITIMIZING THE ANALYSIS
 - LEGAL FRAMEWORK
LOWER RIO GRANDE WATER QUALITY INITIATIVE

• STATUS OF THE LRGWQI
 • MODEL (LAQUAL II) HAS BEEN COMPLETED
 • CALIBRATED
 • APPROVED BY BOTH U.S. AND MEXICAN TEAMS
 • STAKEHOLDER ENGAGEMENT
 • ONGOING, WORKSHOPS HELD IN U.S. COMMUNITIES AND ARE BEING PLANNED IN MEXICO AT THIS TIME
 • BINATIONAL MEETING (AUGUST 2018, TENTATIVE)
 • DISCUSS MODEL AND SCENARIO DEVELOPMENT
 • DRAFT REPORT OF INITIATIVE AND WATER QUALITY IMPROVEMENT PLAN

• WILL SERVE AS AN INSTITUTIONAL MODEL FOR ADDRESSING ADDITIONAL TRANS-BOUNDARY WATER QUALITY ISSUES IN OTHER PARTS OF THE RIO GRANDE.
CONTACT INFO:

LESLIE GRIJALVA, USIBWC CRP PROGRAM MANAGER
Leslie.Grijalva@ibwc.gov
915-832-4770

CRP Website: https://www.ibwc.gov/CRP/Index.htm

Thank you!